Graphs with maximal irregularity

WebWe also present lower bounds on the maximal irregularity of graphs with fixed minimal and/or maximal vertex degrees, and consider an approximate computation of the irregularity of a graph. Download Full-text. Related Documents; Cited By; References; Molecular Descriptors of Nanotube, Oxide, Silicate, and Triangulene Networks WebA graph is thus locally irregular if for each vertex v of G the neighbors of v have distinct degrees, and these graphs are thus termed highly irregular graphs. Properties of …

Graph irregularity and its measures - ScienceDirect

WebJul 25, 2024 · The irregularity of a graph is the sum of the absolute values of the differences of degrees of pairs of adjacent vertices. In this paper, we obtain an upper bound on the irregularity of graphs in terms of the order, the size and the number of pendant … WebJan 18, 2024 · The study of graphs and networks accomplished by topological measures plays an applicable task to obtain their hidden topologies. This procedure has been greatly used in cheminformatics, bioinformatics, and biomedicine, where estimations based on graph invariants have been made available for effectively communicating with the … dve50m7450w/a3 samsung dryer manual https://garywithms.com

Kissing Numbers of Regular Graphs SpringerLink

Web3. Lower Bounds on Graphs with Maximal Irregularity. The authors consider graphs with maximal irregularity and prescribed minimal or/and maximal degrees. First, the authors show a lower bound for graphs with … WebAlizadeh et al. (2024) studied the irregularity of π-permutation graphs, Fibonacci cubes, and trees. Hansen and Mélot (2005) characterized the graphs of order n and size m that … WebJul 28, 2024 · An inclusive distance vertex irregular labeling of a graph G is an assignment of positive integers \(\{1, 2, \ldots , k\}\) to the vertices of G such that for every vertex the sum of numbers assigned to its closed neighborhood is different. The minimum number k for which exists an inclusive distance vertex irregular labeling of G is denoted by … dve50m7450w manual

NONREGULAR GRAPHS WITH MINIMAL TOTAL IRREGULARITY

Category:(PDF) Graphs with Large Variance - ResearchGate

Tags:Graphs with maximal irregularity

Graphs with maximal irregularity

[PDF] Modular irregularity strength of graphs Semantic Scholar

WebFeb 28, 2024 · Graph-theoretic irregularity indices have diverse applications in computer science. This paper extends their practical applicability in reticular chemistry. First, we put forward a method of computing various irregularity indices of graphs by means of their main eigenvalues. This presents applications of spectral graph theory in chemistry. We … WebSep 1, 2024 · Here, we characterize general graphs with maximal σ irregularity. We also present lower bounds on the maximal σ irregularity of graphs with fixed minimal and/or …

Graphs with maximal irregularity

Did you know?

WebDec 16, 2008 · The most irregular connected graph on n (n ⩾ 10) vertices is a pineapple PA (n, q) in which the clique size q is equal to ⌈ n 2 ⌉ + 1. Extremal graphs have been obtained by AGX and recognized to be complete split graphs for n = 10, 11, …, 17. For smaller values of n the maximal graph is again a pineapple (reduced to a star for n = 5, … Webvertex of degree n - 1. If irr(e ) = n - 2 would hold for all edges of a graph, then this graph would have maximal irregularity. In the case of trees, this condition is obeyed by the star (and only by it). Thus we arrive at the following simple result: Lemma 1.2. Among trees of ordern, the star Sn is the unique tree with greatest irregularity ...

Web3. Lower Bounds on Graphs with Maximal Irregularity. The authors consider graphs with maximal irregularity and prescribed minimal or/and maximal degrees. First, the authors show a lower bound for graphs with … WebSep 15, 2024 · Recently, Gutman introduced the class of stepwise irregular graphs and studied their properties. A graph is stepwise irregular if the difference between the degrees of any two adjacent vertices is exactly one. In this paper, we get some upper bounds on the maximum degree and sharp upper bounds on the size of stepwise irregular graphs.

WebDec 28, 2024 · Abstract. A modular irregular graph is a graph that admits a modular irregular labeling. A modular irregular labeling of a graph of order is a mapping of the set of edges of the graph to such that the weights of all vertices are different. The vertex weight is the sum of its incident edge labels, and all vertex weights are calculated with the sum … WebDec 11, 2024 · General graphs with maximal σ irregularity. In order to characterize graphs with maximal σ irregularity, we first determine the minimum number of …

WebMar 15, 2024 · Abdo et al. [2] determined all graphs with maximal total irregularity and proved that among all trees of the same order the star has the maximum total …

WebIn order to characterize graphs with maximal irregularity, we rst determine the minimum number of universal vertices that such graphs must have. Lemma 2.1. Let Gbe a graph with maximal irregularity among all graphs of order n. Then, Ghas at least n 3 universal vertices. Proof. Assume that Gis a graph with maximal irregularity whose set U of ... dve50m7450w partsWebIn order to characterize graphs with maximal irregularity, we first determine the minimum number of universal vertices that such graphs must have. Lemma 2.1. Let G be a graph … dve50r5200w/a3 partsWebMar 20, 2024 · Abstract. A simple graph is said to be regular if its vertices have the same number of neighbors. Otherwise, is nonregular. So far, various formulas, such as the Albertson index, total Albertson index, and degree deviation, have been introduced to quantify the irregularity of a graph. In this paper, we present sharp lower bounds for … crystal bell murderWebIrregularity indices are usually used for quantitative characterization of the topological structures of non-regular graphs. In numerous problems and applications, especially in the fields of chemistry and material engineering, it is useful to be aware of the irregularity of a molecular structure. Furthermore, the evaluation of the irregularity of graphs is valuable … crystal bell npWebDec 1, 2024 · The extremal irregularity of connected graphs with given number of pendant vertices. The irregularity of a graph G = (V, E) is defined as the sum of imbalances ∣du … crystal bellowsWebNov 25, 2024 · Abstract. We prove a sharp upper bound on the number of shortest cycles contained inside any connected graph in terms of its number of vertices, girth, and maximal degree. Equality holds only for Moore graphs, which gives a new characterization of these graphs. In the case of regular graphs, our result improves an inequality of Teo and Koh. crystal bellotticrystal bell norton dds